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MOTIVATION
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Management of routine ICU interventions constitute a major part of
intensive care, e.g:
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Invasive mechanical ventilation: use of mechanical means to assist or
replace spontaneous breathing.

»  40% of ICU ventilated at any given hour — 12% of US hospital costs.

» Typically coupled with sedation to maintain comfort and stability.
Timely intervention can improve outcomes and reduce costs.

But their effect is often poorly understood — particularly for heterogenous
patient populations — so clinical opinion varies.



VENTILATION

+ Weaning: process of liberation from mechanical ventilation.

» Premature, delayed weaning both associated with worse outcomes.

+ We aim to develop a clinician-in-loop decision support tool to

» alert caregivers when a patient is ready for weaning, and

» recommend sedation and ventilation settings...

..by modeling this as a Markov Decision Process (MDP).
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+ Offline, off-policy RL to learn optimal policy given sub-optimal histories.



WHY REINFORCEMENT LEARNING?

+ Fundamentally a sequential decision making problem:
» Choose the best action at each point in a stochastic process,

» Capture delayed effects of actions, and uncertainty in transitions and
outcomes.

» Handle data collected from biased policies.
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PREPROCESSING DATA

+ Measurements tend to be sparse, irregularly sampled and error-prone

+ We tackle this by using multi-output Gaussian Processes (GPs) to jointly
model vitals by estimating covariance structures between them [crenc'17]

v=f(t)+e,
f(t) ~ GP(m(t), A (t,t))

+ We set m(t) = 0 and k(t, t') as kernel in linear coregionalization model
with the spectral kernel as the basis function.



PREPROCESSING DATA
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MDP FORMULATION

+ Given histories {so, do, I, S1, 1, I'>, S2, Aa, 13, S3...)", We wish to solve for the
following objective function:

N T
max » . R(s%,7), where R(s,7) = lim > ~'r(s¢, m(s¢))

m(s):S—A n—1 T—o00 =0

+ State variable s;: € S: 32-dim feature vector comprising demographic
data, time-varying vitals, sedatives, vent duration, reintubation number.
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MDP FORMULATION

+ Given histories {so, do, I, S1, 1, I'>, S2, Aa, 13, S3...)", We wish to solve for the
following objective function:

N T
max »  R(s%,7), where R(s,7) = lim > ~'r(s¢, 7(st))
m(s):S—A n—1 I'—o0 t=0

+ State variable s;: € S: 32-dim feature vector comprising demographic
data, time-varying vitals, sedatives, vent duration, reintubation number.

+ Action or decision variable at each time step is chosen from a discrete
action space of vent settings and dosage levels.
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All administered sedatives are mapped to single discretized scale.



MDP FORMULATION

+ Given histories {so, do, I, S1, 1, I'>, S2, Aa, 13, S3...)", We wish to solve for the
following objective function:

N T
max »  R(s%,7), where R(s,7) = lim > ~'r(s¢, 7(st))
m(s):S—A n—1 I'—o0 t=0

+ State variable s;: € S: 32-dim feature vector comprising demographic
data, time-varying vitals, sedatives, vent duration, reintubation number.

+ Action or decision variable at each time step is chosen from a discrete
action space of vent settings and dosage levels.

+ Exogenous information comes in the form of the reward function.



DEFINING THE REWARD FUNCTION

+ Wean guidelines from Hospital of the University of Pennsylvania:

Physiological Stability Oxygenation Criteria
Respiratory Rate < 30 PEEP (cm H50) < 8
Heart Rate < 130 SpOsy (%) > 88

Arterial pH > 7.3 Inspired O3 (%) < 50

+ We want to penalize:

Vm
Vm

» prolonged ventilation

Reward

v

vitals exceeding desired ranges

Value, V¢

» sharp changes in vitals

v

failed spontaneous breathing trials

Reward

reintubation within ICU admission

v

Av; Threshold = 20%

% Change in value, Av;



FITTED Q-1TERATION

+ Approximation of the Q-function all over the state-action space must be
determined from finite, sparse sets of transitions.

+ Fitted Q Iteration (FQI) is a form of off-policy batch-mode RL that uses one-
step transitions F = {(sy,ay’, si 1) }n=1.7 to learn a sequence Q1,Q2...Q,
by solving a series of K supervised learning problems.

+ The training set for the kth problem is defined by:
{(5?7 CL?’), T(S?a CL?) + 8 glga}}f Qk—1(3?+17 a)}n:1:|}“|
+ Can take advantage of generalization capabilities of any regression method:

» Extremely Randomized Trees [ErnsT05]

» Feedforward Neural Networks [RiepmiLLER05]



CONVERGENCE OF FITTED-Q ITERATION
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POLICY ESTIMATION
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EVALUATING PERFORMANCE OF POLICIES

Ventilation: A(rtrqr, MHosp)
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Proposes a data-driven approach to the weaning from ventilation in the ICU.

Patient admissions are modeled as MDPs, with clinically driven definitions
of state, action, and reward.

Reinforcement learning with FQI is then used to learn a simple weaning
policy from examples in historical data.

Capable of extracting meaningful indicators for patient readiness.

Recommendations appear to outperform clinical practice on average, in
terms of regulation of vitals and reintubations.



FUTURE DIRECTIONS

+ CONTROLLING POLICY SENSITIVITY TO REWARD SHAPING
» Inferring clinician’s priorities using inverse RL [abbeel'o4]
» Optimization over multiple objectives [Lizotte 2]
+ ACCOUNTING FOR PARTIAL OBSERVABILITY
+ QUANTIFYING UNCERTAINTY
» Probabilistic estimates of Q using GP regression [chowdhary14]

+ CONTROLLING FOR INTERVENTION BIAS FROM SUB-OPTIMAL HISTORIES
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