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✦ Management of routine ICU interventions constitute a major part of 
intensive care, e.g: 

✦ Invasive mechanical ventilation: use of mechanical means to assist or 
replace spontaneous breathing. 

‣ 40% of ICU ventilated at any given hour — 12% of US hospital costs. 

‣ Typically coupled with sedation to maintain comfort and stability.  

✦ Timely intervention can improve outcomes and reduce costs. 

✦ But their effect is often poorly understood — particularly for heterogenous 
patient populations — so clinical opinion varies.

Motivation
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Ventilation 
✦ Weaning: process of liberation from mechanical ventilation. 

‣ Premature, delayed weaning both associated with worse outcomes. 

✦ We aim to develop a clinician-in-loop decision support tool to  

‣ alert caregivers when a patient is ready for weaning, and 

‣ recommend sedation and ventilation settings…
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…by modeling this as a Markov Decision Process (MDP).

✦ Offline, off-policy RL to learn optimal policy given sub-optimal histories.



Why Reinforcement Learning? 
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✦ Fundamentally a sequential decision making problem:  

‣ Choose the best action at each point in a stochastic process,  

‣ Capture delayed effects of actions, and uncertainty in transitions and 
outcomes.  

‣ Handle data collected from biased policies.



MIMIC III Dataset
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‣ De-identified critical care data for 53,423 adult admissions

‣ 2,464 successfully discharged following extended periods of ventilation



Preprocessing Data
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✦ Measurements tend to be sparse, irregularly sampled and error-prone

✦ We tackle this by using multi-output Gaussian Processes (GPs) to jointly 
model vitals by estimating covariance structures between them [Cheng’17].

✦ We set m(t) = 0 and k(t, t’) as kernel in linear coregionalization model 
with the spectral kernel as the basis function.



Preprocessing Data
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MDP Formulation
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✦ State variable st ∈ S: 32-dim feature vector comprising demographic 
data, time-varying vitals, sedatives, vent duration, reintubation number.
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✦ Given histories ⟨s0, a0, r1, s1, a1, r2, s2, a2, r3, s3…⟩n, we wish to solve for the 
following objective function:



MDP Formulation
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✦ State variable st ∈ S: 32-dim feature vector comprising demographic 
data, time-varying vitals, sedatives, vent duration, reintubation number. 

✦ Action or decision variable at each time step is chosen from a discrete 
action space of vent settings and dosage levels. 

✦ Given histories ⟨s0, a0, r1, s1, a1, r2, s2, a2, r3, s3…⟩n, we wish to solve for the 
following objective function:

All administered sedatives are mapped to single discretized scale.



MDP Formulation
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✦ Exogenous information comes in the form of the reward function. 

✦ Given histories ⟨s0, a0, r1, s1, a1, r2, s2, a2, r3, s3…⟩n, we wish to solve for the 
following objective function:

✦ State variable st ∈ S: 32-dim feature vector comprising demographic 
data, time-varying vitals, sedatives, vent duration, reintubation number. 

✦ Action or decision variable at each time step is chosen from a discrete 
action space of vent settings and dosage levels. 



✦ We want to penalize: 

‣ prolonged ventilation 

‣ vitals exceeding desired ranges 

‣ sharp changes in vitals 

‣ failed spontaneous breathing trials 

‣ reintubation within ICU admission

Defining the Reward function 
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✦ Wean guidelines from Hospital of the University of Pennsylvania:



Fitted Q-iteration
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✦ Approximation of the Q-function all over the state-action space must be 
determined from finite, sparse sets of transitions. 

✦ Can take advantage of generalization capabilities of any regression method: 

‣ Extremely Randomized Trees [Ernst’05] 

‣ Feedforward Neural Networks [Riedmiller’05]

✦ Fitted Q Iteration (FQI) is a form of off-policy batch-mode RL that uses one-
step transitions               to learn a sequence        , 
by solving a series of K supervised learning problems. 

✦ The training set for the kth problem is defined by:



✦ At each iteration k, we train on one-step transition tuples ⟨st, at, rt, st+1⟩ 

extracted from 1800 admissions. 

✦ Convergence from mean squared Bellman residual in training set:

Convergence of Fitted-Q iteration
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Policy Estimation
✦ Given our estimate of Q, we want policy π(s): S -> A such that: 

for all s ∈ S.

✦ For interpretability, we learn this mapping using extremely-randomized trees.
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Evaluating performance of Policies
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Conclusions
‣ Proposes a data-driven approach to the weaning from ventilation in the ICU.  

‣ Patient admissions are modeled as MDPs, with clinically driven definitions 
of state, action, and reward.  

‣ Reinforcement learning with FQI is then used to learn a simple weaning 
policy from examples in historical data.  

‣ Capable of extracting meaningful indicators for patient readiness. 

‣ Recommendations appear to outperform clinical practice on average, in 
terms of regulation of vitals and reintubations. 
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Future Directions
✦ Controlling Policy sensitivity to reward shaping 

‣ Inferring clinician’s priorities using inverse RL [Abbeel’04] 

‣ Optimization over multiple objectives [Lizotte’12] 

✦ Accounting for Partial Observability 

✦ Quantifying uncertainty 

‣ Probabilistic estimates of Q using GP regression [Chowdhary’14] 

✦ Controlling for Intervention bias from sub-optimal histories 
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 Thank You!
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Questions?
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